首頁(yè) > 學(xué)能教育 > 學(xué)習(xí)方法 > 正文
高中數(shù)學(xué):這些知識(shí)點(diǎn)容易出錯(cuò)
數(shù)學(xué)好比一座高山,可哪怕是高中數(shù)學(xué)這樣的小山丘,也讓無(wú)數(shù)學(xué)子望而卻步。有人卡在半山腰上不去,畏難而退;有人人迷了路,山腰兜兜轉(zhuǎn)轉(zhuǎn)。浪費(fèi)了無(wú)數(shù)時(shí)間和精力,滿紙推算也只能掙一個(gè)“同情分”。智擇優(yōu)小編整理出了一份完整的歷年高考易錯(cuò)知識(shí)點(diǎn),希望能夠幫助大家少走一些彎路。
集合與簡(jiǎn)單邏輯
一、遺忘空集
空集是任何非空集合的真子集,因此對(duì)于集合B,就有B=A、φ≠B、B≠φ三種情況出現(xiàn)。在實(shí)際解題中,如果考生思維不夠縝密,就有可能忽視第三種情況,導(dǎo)致結(jié)果出錯(cuò)。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況??占且粋€(gè)特殊集合,考生因思維定式遺忘集合導(dǎo)致結(jié)果出錯(cuò)或不全面是常見(jiàn)的錯(cuò)誤,一定要倍加當(dāng)心。
第二、忽視集合元素的三性
集合元素具有確定性、無(wú)序性、互異性的特點(diǎn),在三性中,數(shù)互異性對(duì)答題的影響最大,尤其是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)考生字母參數(shù)掌握程度的要求。在考場(chǎng)答題時(shí),考生可先確定字母參數(shù)的范圍,再一一具體解決。
第三、四種命題結(jié)構(gòu)不明
若原命題為“若 A則B”,則逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里將會(huì)出現(xiàn)兩組等價(jià)的命題:“原命題和它的逆否命題等價(jià)”,“否命題與逆命題等價(jià)”??忌谟龅健坝赡骋粋€(gè)命題寫(xiě)出其他形式命題”的題型時(shí),要首先明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。
在否定一個(gè)命題時(shí),要記住“全稱命題的否定是特稱命題,特稱命題的否定是全稱命題”的規(guī)律。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,不是“a ,b都是奇數(shù)”。
第四、充分必要條件顛倒
兩個(gè)條件A與B,若A=>B成立,則A是B的充分條件,B是A的必要條件;若B=>A成立,則A是B的必要條件,B是A的充分條件;若A<=>B,則AB互為充分必要條件。考生在解這類題時(shí)最容易出錯(cuò)的點(diǎn)就是顛倒了充分性與必要性,一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
第五、邏輯聯(lián)結(jié)詞理解不準(zhǔn)確
在判斷含邏輯聯(lián)結(jié)詞的命題時(shí),考生很容易因理解不準(zhǔn)確而出錯(cuò)。小編在這里給出一些常用的判斷方法,希望同學(xué)們牢牢記住并加以運(yùn)用。
p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括為一真即真);
p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);
┐p真<=>p假,┐p假<=>p真(概括為一真一假)。
函數(shù)與導(dǎo)數(shù)
一、求函數(shù)定義域題忽視細(xì)節(jié)
函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場(chǎng)上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時(shí),要注意以下幾點(diǎn):分母不為0;偶次被開(kāi)放式非負(fù);真數(shù)大于0以及0的0次冪無(wú)意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時(shí)千萬(wàn)別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤
帶絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:一,在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫(huà)出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開(kāi)函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時(shí),要一時(shí)間在腦海中畫(huà)出函數(shù)圖象,從圖象上分析問(wèn)題,解決問(wèn)題。
對(duì)于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住,不要使用并集,指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤
求函數(shù)奇偶性類的題最常見(jiàn)的錯(cuò)誤有求錯(cuò)函數(shù)定義域或忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊?。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。
在用定義進(jìn)行判斷時(shí),要注意自變量在定義域區(qū)間內(nèi)的任意性。
第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)
很多抽象函數(shù)問(wèn)題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)的,在解答此類問(wèn)題時(shí),考生可以通過(guò)類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過(guò)特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問(wèn)題的突破口。
抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時(shí)要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過(guò)程層次分明,還要注意書(shū)寫(xiě)規(guī)范。
第五、函數(shù)零點(diǎn)定理使用不當(dāng)
若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0。這個(gè)c也可以是方程f(c)=0的根,稱之為函數(shù)的零點(diǎn)定理,分為“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,而對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí),考生需格外注意這類問(wèn)題。
第六、混淆兩類切線
曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。
因此,考生在求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類型的切線。
第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系
一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會(huì)出錯(cuò)。
解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意,一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導(dǎo)數(shù)與極值關(guān)系不清
考生在使用導(dǎo)數(shù)求函數(shù)極值類問(wèn)題時(shí),容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會(huì)出錯(cuò),出錯(cuò)原因就是考生對(duì)導(dǎo)數(shù)與極值關(guān)系沒(méi)搞清楚??蓪?dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,小編在此提醒廣大考生,在使用導(dǎo)數(shù)求函數(shù)極值時(shí),一定要對(duì)極值點(diǎn)進(jìn)行仔細(xì)檢查。
數(shù)列
一、基本公式用錯(cuò)
等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;
等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。
在數(shù)列的基礎(chǔ)題中,等差、等比數(shù)列公式是解題的根本,一旦用錯(cuò)了公式,解題也失去了方向。
第二、an,Sn關(guān)系不清致誤
在數(shù)列題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在著關(guān)系。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是關(guān)系式分段。在n=1和n≥2時(shí),關(guān)系式具有完全不同的表現(xiàn)形式,這也是考生答題過(guò)程中經(jīng)常出錯(cuò)的點(diǎn),在使用關(guān)系式時(shí),要牢牢記住其“分段”的特點(diǎn)。
當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式,就可以通過(guò)數(shù)列求和的方法求出Sn;知道了Sn,也可以求出an。在答題時(shí),一定要體會(huì)這種轉(zhuǎn)換的相互性。
第三、等差、等比數(shù)列性質(zhì)理解錯(cuò)誤
等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般來(lái)說(shuō),有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
解答此類題時(shí),要求考生全面考慮問(wèn)題,考慮各種可能性,認(rèn)為正確的就給予證明,不正確就舉出反例駁斥。等比數(shù)列中,公比等于-1是特殊情況,在解決相關(guān)題型問(wèn)題時(shí)值得注意。
第四、數(shù)列中最值錯(cuò)誤
數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),考生要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。但是很多同學(xué)在答題時(shí)容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對(duì)于n取何值能夠取到最值求解時(shí)出錯(cuò)。
在正整數(shù)n的二次函數(shù)中,其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸遠(yuǎn)近而定。
第五、錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)
錯(cuò)位相減求和法適用于“數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和”的題型。設(shè)和式為Sn,在和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,兩個(gè)和式錯(cuò)一位相減,得到的和式要分成三部分:原來(lái)數(shù)列的一項(xiàng);一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和以及原來(lái)數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。
考生在用錯(cuò)位相減法求數(shù)列的和時(shí),一定要注意處理好這三個(gè)部分,否則很容易就會(huì)出錯(cuò)。
智擇優(yōu)推薦您繼續(xù)閱讀:
2016年高考考生必讀:高考數(shù)學(xué)沖刺四點(diǎn)方法
2016屆高三生數(shù)學(xué)成績(jī)不穩(wěn)定:針對(duì)性復(fù)習(xí)扎實(shí)基礎(chǔ)至關(guān)重要
【本站原創(chuàng)內(nèi)容版權(quán)歸智擇優(yōu)所有,未經(jīng)許可不得轉(zhuǎn)載!若本站從網(wǎng)絡(luò)獲取的內(nèi)容、使用的圖片、視頻涉及侵權(quán),請(qǐng)立即告知,必定立刻撤銷刪除?!?/p>
人看過(guò)(1) 贊一個(gè)
一站式幫助家長(zhǎng)解決青少年成長(zhǎng)教育困惑??焖佾@取矯正青少年行為、心理偏差的家庭教育方法。在線與資深教育導(dǎo)師一對(duì)一咨詢,幫您分析家庭教育問(wèn)題、提供解決方案。您可以用手機(jī)掃描左邊二維碼,關(guān)注「智擇優(yōu)」或者「zhizeu」微信公眾號(hào),獲得更多智擇優(yōu)精選教育資訊